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The question of the existence of an unloading wave in the case of one-dimensional wave 
propagation in a semi-infinite rod of material with delayed yielding is solved herein. 

Unloading conditions are formulated here, and an analytic method to obtain an expression 

for the initial velocity of the unloading wave is expounded. 

1. Unlordlng oondftfon. The dependence u - e - t is taken in the form 
(I = F (5. 2 - t/o,,) in [l] for problems of active longitudinal wave propagation in a rod 
from material with delayed yielding. In particular, the solution is investigated for the 
law 0 = Et, 1 e 1 Q ep 0 = E,e + (E - Ei) e, ft - 2 I 41, I ~3 I > es H*i) 

which corresponds to linear hardening upon instantaneous loading. Here e, is a monoton- 
ely decreasing function of its argument. Henceforth considering only the tension case 
(a I+ 0, f + 0) , let us note that the requirement for a growth in stress in the cross sec- 

tion, in particular, of loading on the endface of a semi-infinite rod is not necessary. 
Indeed, defining the plastic deformation as EP = E - u / E, as is customary, we see that 

the transition to passive strain is determined by the requirement 

By using (1.1) this condition can be represented in one of the two forms 

(1.2) 

(1.3) 

The limiting case of “ne&al” loading investigated in [l] (domain 2 in Fig. 1, and 
Formula (13) in the mentioned paper) corresponds to the equality sign in (1.3). In par- 
ticular, unloading at the end of the rod starts at time t = f, if the applied stress 9, (I) = 

= o (0. t) satisfies the condition 
9’ (C) < EQ’ (1) for t > b (1.4) 

2, Unlordiag wava. Let T be the time of origination of plastic deformation 
at the end t = 0 of a semi-infinite rod, and let condition (1.4) be satisfied from the 
time t = 6 > 7. Let us show that the boundary between the active and passive strain 
domains is t = f (x) in the plane of the characteristics (2, t), i. e, the unloading wave 
has a finite propagation velocity b = l/f’ (z) satisfying the condition 

olib<oo. ao= JQ?-G += Czz (2.1) 

Here ue 01 are propagation velocities of the longitud~al elastic and plastic waves, 
respectively. For the unloading domain we take the connection between the stress and 
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strain as u - a, = E (e - F+), or according to (1.1) 

(I = 1Fe - (E - El)@, - sSO) 12.2) 

Here % (L) is the maximum value of the strain at the section r; e, is the value of 
es (f-- t / a,,) at t = f(z). This hypothesis corresponds to observations, in particular, to 
“freezing” of relaxation, and the time of passage of active strain during unloading, being 

manifested in the exhaustion of the delay period by repeated impacts [2 and 31. The 
equation of motion in the unloading domain t > f (z), if it exists, will be according to 

(2.2) 

and its general solution will be z 
00’ - fQ* 

U(E. tt-F1(z+~f)+F2(f~00/~f- Cl02 
f 
(QO- OOWZ (2.31 

u 
Let us recall [l] that in the active strain domain 

1-x / 0‘ t--x/o. t 

u=-- 
& s 

[cp (E) --Es8 WI 4 - a0 
s 

a0 
_~&)4-~ S gr (E) dF. (2.4) 

: t 0 

If the desired unloading wave is a strong discontinuity wave, then from the kinematic 

and dynamic conditions It lUX] = - lull pb lull = - 61 = - El%1 
it follows that & = a0 since the jumps in the mentioned quantities are nonzero. There- 
fore, the unloading wave exists for a jump reduction in the loading at the end of the rod, 

and it propagates at the elastic wave velocity. 
Let us investigate the case of a weak-discontinuity unloading wave when 

=uto for t = f (2) (2.5) 

where, according to (2.5), we understand II to be the expression 

u ~o=-~~~~~~~~~~~-=a~~~~~)-~~,-a~~~~~ (x)--e) (2.6) 

Computing uX and ut on the basis of (2.3), and utilizing(2.4)-(2.6),we find 

Using these expressions and computing the quantity & I dt on the unloading wave by 
means of (2.3), we obtain 

ae a,2 - v 
at = E, fao2 _ b?) t 

=\ 
@ (f tz) - x,, - Fes’ 

( 
f @) -+j]+e;(f+)--5) (2.7) 

If the line ; = f (z) is actually an unloading wave, then according to the first inequa- 
lity of (1.3). the following inequality should hold : 

(2.8) 

Let us investigate it m order to clarify the properties of the unloading wave, i.e. the 
conditions under which it exists. 

The velocity of the unloading wave cannot exceed the velocity of the elastic wave. 
Indeed, if b > au (meaning b > a,), then it is clear geome~ically that! (r) --z/as < fe 
But the expression in square brackets in (2.8) is hence nonnegative, and the inequality 

(2.8) is not satisfied. 
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If we put b < at (meaning b < +) then the unloading wave will not intersect the ac- 
tive strain domain, which contradicts its de&&ion. 

Therefore, the inequality (2.8) is valid under the conditions or d b 6 a,, if the loading 

at the end of the rod is subject to the requirement (1.4). 

3. Inftlrl velocity of the unlardlng WAVO, On the basis of the results 
in Sects. 1 and 2 let us obtain a formula for the initial velocity of the unloading wave. 

Let us first assume that the pressure 0 (f) changes its velocity by a jump at the initial 
unloading point on the plane of characteristics (t = &,, t = 0) so that the following rela- 
tionships hold : kl = Q’ vo - 01, k, = 9’ (6 + 0) 

Evidently kl and kz should satisfy the inequalities 

ki > Er,’ (io). k, < Erg’ (tr) 

On the basis of (2.4) and (2.7). the connection between the ultimate strain rates at the 
rod endface (Y = 0) is given by Formula 

(3.11 

But according to the laws of linear hardening and unloading, we have at this same 

(3.2) 

Substituting (3.2) into (3.1) we obtain an algebraic equation for the initial velocity 
of the unloading wave kz kl (a3 - M) b* (aa’ -- - a?) 

pa02 - ro22 faot - br) + aI2 (%2 _ M) es’ (ro) (3.3) 

from which it results that 
b(O)= 

ar*ao* (kr - k2) '?I 

1 U”2kl - a& - pa”2 (b - upjes’ (to) /‘ 
(3.4) 

In particular, if k2 = - 00, i.e. the pressure at the end of the rod diminishes abruptly, 
then b m a,,. 

If kr = k2 = Ee,’ (Q, then (3.4) becomes meaningless. The relationship (3.1) is hence 

satisfied identically. In order to find b ((3 in the smooth unloading case, it is sufficient 
to assume continuity of I#’ (t) at the initial unloading point. 

The process of determining b (0) reduces to the following. Let us calculate the limit 
values of the second derivatives of the strain with respect to time at I = 0, t .= tr 

a*&- al* d*eu 
-ygr= @f’ - 

-- 
lp dz= 

It hence follows that a2d+ 
a*e- 

dl, -e (I’) art =a,“(OIi --O(P)] (3.5) 

am=&- t 
a0 + 01 a0 - 01 

(i - (1 f oef’)2 1 (=@ - ‘F 

On the other hand, the linear hardening and unloading laws yield 
I%.+ a*% a%? 
--‘dt’ J12 00 

=p;rr'(I,,(f -$) (3.6) 

The relationship (3.6) will be a consequence of the continuity of qP (1) at 1 = z,,, 

Equating (3.5) and (3.6), we obtain an algebraic equation to determine the initial 
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velocity of the unloading wave 
a,9 + 200% - 3aa*ur = 0 (3.7) 

Solving (3.7) we find 
b(Oj=h 

K 
$ + 3y_2%] (3.8) 

Formula (3.8) holds even in the absence of the delayed yielding effect, and is presen- 

ted in [4]. 
The expressions obtained for the initial velocity of the unloading wave will be the 

starting point for constructing all unloading waves by the method of characteristics. 
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The problem of existence and stability of steady helical motions of a rigid body bounded 
by a simply connected syrface, was studied by Liapunov [l], using the Routh’s theorem 
and its complement. Steklov in @] established the ex$tence of steady helical motions 
of a rigid body bounded by a multiply connected surface. Below we investigate the sta- 
bility of the motions found by Steklov using the Routh’s theorem and the Liapunov’s com- 

plement, and we obtain the necessary conditions as well as some sufficient conditions of 

stability. 

1, Let us suppose that a rigid body with several cavities filled with a perfect fluid, 
moves in an infinite, homogeneous, incompressible perfect fluid. We assume that the 
space occupied by the fluid (bounded by the surface of the body) and the cavities, are 
all multiply connected, We also assume that no forces act on the body and the fluid and 
that the motion of the fluid is irrotational. Taking any three mutually perpendicular 
straight lines rigidly connected to the body as the OXYZ -coordinate system, we shall 
denote the projections of the velocity of the origin on these axes by u, v and w and by 
p, p and r the projections of the angular velocity of the body. The principal rotations 


